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In recent years laser power transmitted through an optical tibre has been used to provide 
the energy source for the treatment of tumours by local hyperthermia. The radiation from the 
libre tip is scattered and absorbed by the tissue, where it is converted into thermal energy. 
When the tissue has been raised above about 43 “C for a length of time depending on the tem- 
perature, it dies; at the same time the removal of energy by perfusion of the blood supply also 
ceases. The method is restricted in the volume that can be treated using a single libre, so tibre 
clusters are now being introduced. A computer program has been written which solves the 
equations governing both the scattering and absorption processes and the heat conduction 
problem, using the method of lines. Computed results have been found which agree 
qualitatively with the limited amount of evidence at present available and is here 
demonstrated for the case of a cluster of five libres. With accurate values of the physical 
parameters, computations such as these can be a useful additional guide to the surgeon when 
making decisions about method of treatment, location, and exposure time. 0 1989 Academic 

press. Inc. 

1. THE MATHEMATICAL MODEL 

A laser beam can be used to provide a very accurate beam of electromagnetic 
energy. This is converted into thermal energy when it interacts with tissue, and the 
damage caused by the resultant heating, if properly directed and controlled, is the 
basis of treatment of tumours by hyperthermia. Scattering as well as absorption 
takes place and both effects depend on the particular choice of wavelength. The 
kind of laser used will, therefore, be chosen for its suitability for the intended 
application Cl]. This method differs from much laser surgery currently in use, 
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which relies on the energy of the laser to destroy and remove the tumour. With 
local hyperthermia however, the tissue is killed, but the body’s own mechanisms are 
used to remove necrotic tissue, which is replaced by scar tissue or, in some cases, 
regenerated healthy tissue. 

If only one fibre is used to treat a substantial volume, rather large temperature 
rises can occur at the tip. For example, ‘a Nd-YAG laser run much in excess of the 
equivalent of a continuous output of 1 W produces charring at this point, and an 
increase in power does not appear to produce an increase in the volume treated 
[2]. A number of different techniques are available to overcome this problem. The 
exposure time can be increased, although this may lead to excessive length of 
treatment, and it is not yet clear how large a volume can be treated this way. 
Alternatively, repeated treatment with a single fibre can be used with the tip in a 
different position after each exposure. This is time-consuming and might lead to 
excessive mechanical damage. Another way is to use a stripped fibre whose end has 
been specially etched so that it acts more like a line source than a point source [3]. 
Consequently, there is less risk of charring when higher powers are used. The final 
possibility is to use a cluster of libres with a suitable spacing, all energised at the 
same time. A much larger region can be treated this way in a single exposure even 
though the power transmitted down each tibre separately must not exceed the 
maximum value permissible when a single fibre is used in isolation. As an example 
of this type of treatment, this paper studies the theoretical modelling and numerical 
solution of this problem for a cluster of five fibres with parallel axes and coplanar 
tips arranged at the corners and the centre of a square. 

Laser radiation is scattered as well as absorbed by the tissue through which it 
passes. To solve the problem accurately therefore requires solution of the transport 
equation [4, Chap. 73. The complexity of this equation is such as to make it 
unattractive, and the diffusion approximation to that equation is used here 
[4, Chap. 91. The only disadvantage of this approach is that when there is very 
strong absorption as well as scattering, as may be the case in the liver for example, 
the diffusion approximation may not be entirely appropriate. Unfortunately there 
does not seem to be a practical alternative at present. If the average diffused inten- 
sity passing through a particular point in whatever direction is U (W cmP2), the 
equation satisfied by U is 

V’U-3k,k,,U= -3k,k,,L, (1) 

where V2 is the Laplacian operator, k, (cm-‘) is an absorption coefficient, k, 
(cm-‘) is a scattering coefficient, 

k,=k,+k, and kt, = k, + k,(l - g); 

g is the mean cosine of the scattering angle [S], so k,, is equal to k, when the 
scatterers are isotropic. The quantity L (W cm-‘) is the sum of all terms due to 
incident radiation from the laser beam. For a single axially symmetric point source 
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with a uniform power distribution in a cone of angle c1 about the axis, the form of 
L at a distance r from the source is 

Kexp( -k,s)/(4~r sin &x)2, inside the cone 
? outside the cone, 

where the total power being delivered is K (W). In the problem studied numerically 
here there are five identical such sources each of which have values for K which are 
uniform inside, and zero outside, a cone centred in the forward direction on the axis 
of the optical fibres with an angle c1 from the axis. 

The temperature distribution T (“C) is then governed by a form of the bio-heat 
equation 

~c; (T- T,)=V.AV(T- T,)+47rk,(L+ U) 

_ w+-dT- To) 
i 

(live tissue) 
0 (dead tissue). (2) 

Here p (gcmP3) and pb (gcmP3) are the densities of the tissue and of blood, 
respectively, while c (J gg’ “C-‘) and cb (J gg’ Y-i) are their respective specific 
heats; q (s’) is the perfusion rate; To is body temperature; and A (J cm-’ 
s-i “C-l) is the thermal conductivity of the tissue. The values of these parameters 
are close to those for water although some of them are temperature dependent to 
some extent; q, for example, depends on the rate of metabolism and hence depends 
on van ‘t Hoff’s equation [6] while the optical constants can vary considerably 
during the course of treatment at least when the power from a single libre of 
400 pm diameter is above 1.5 W [a]. The variations can be caused by dehydration, 
tissue shrinkage, deoxygenation of haemoglobin, or destruction of morphological 
structure, as well as temperature dependence. These effects, however, have not been 
included here as the former is probably not important for the exposure times 
considered and the latter is not yet properly quantified. 

The final problem is to determine whether the tissue is alive or dead; although 
the solution of the problem does itself depend on this, it is the final form of this 
region which is of interest to the surgeon. He is interested in knowing that he has 
affected a region in which no malignant cell will survive to produce further 
malignant cells. The exact cause of the death of tissue is to some extent irrelevant 
and may be the indirect result of coagulation or irreversible vascular constriction 
or direct physical damage to the cell itself. Whatever the immediate cause, necrosis 
depends on exposure for a minimum length of time to a temperature above To. 
There appears to be a minimum value, Tmin, for which this will occur [2] which 
seems to be about 42.5 “C. For temperatures above Tmin it is known empirically 
that the exposure necessary halves with each degree rise in temperature, if the tissue 
is held at a fixed temperature for the given time [7]. When the temperature varies 
with time a more sophisticated test must be used, for example, an “ageing function” 
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[S] or “damage integral” [9]. Over the small range of temperatures relevant here, 
the two approaches are essentially equivalent. We shall adopt the first approach 
here. If tissue dies after a time r(T) (s) when it is exposed to a uniform constant 
temperature T, then even if the temperature is varying the tissue is assumed to die 
after the length of time at which 

We shall take 

where To is 37 “C and ~(46) is a convenient reference value; notice that when T is 
46°C this is an identity. A substantial problem is that no accurate values of r are 
known. The most complete set of experiments reported so far were on pig-skin [9] 
and suggest that ~(46) may be an hour. On the other hand, this value does not 
really seem to be consistent with Matthewson’s experiments [2] which suggest 
values that are much shorter; considering the large number of effects to be taken 
into account in these experiments, which were performed on the livers of live rats, 
it is not at all easy to estimate this parameter. There is, however, no particular 
reason to suppose that it is the same for different tissues or that it is appropriate 
over the whole of the temperature range. Below about 42.5 “C, T(T) is effectively 
infinite and above about 60°C coagulation occurs rapidly. As this is a somewhat 
different mechanism leading to cell death, r is unlikely to be given by the same rule. 
Further, on careful inspection, Matthewson’s results [2] suggest that this rule is 
only approximately true for rats’ livers and that there is a change in it somewhere 
in the region of 48-50 “C; this is also a possible interpretation of some of the results 
reported by Dickson and Calderwood [7]. There is sometimes a problem of long- 
term accurate positioning of the tips of the fibres in living tissue which may be in 
substantial motion; this is true of the liver, for example. It can be avoided by using 
treatment times of the order of only a few minutes, so that the very long time-scales 
of the conventional hyperthermia range, in the low 40’s, are not too important, and 
the exact time-scales of the rapid cell death at temperatures over the low 50’s are 
not important. The most significant temperatures would seem to be 45-55 “C, and 
an accurate knowledge of t(T) for this range is important. The rule given here 
seems to be widely accepted, at least in the lower part of the range (Dickson and 
Calderwood [7]) and a value for r(46) of about 15 min is compatible with a wide 
range of results; see [7], although an accurate evaluation of the rule specifically for 
the liver is not yet available. 

Special solutions of Eqs. (1) and (2) can be found in the limit as t -+ co. In 
particular, the distinction between live and dead tissue can be ignored in Eq. (2), 
so that either q is taken as constant and non-zero everywhere, or zero everywhere. 
In either case, spherically symmetric solutions of these equations can be obtained 
in closed analytical form for the equilibrium temperature distribution attained after 
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a long period of time. The necrotic zone is then obtained from (3) very simply as 
a slowly increasing function of time for a single point source. For multiple sources, 
the temperature distribution can be obtained by linear superposition before (3) is 
used to calculate the necrotic zone. 

The spherically symmetric equilibrium solution (o! = n) used for this purpose has 
the following form. Ifs is the distance from the source to the point at which U and 
Tare required then they can be expressed in terms of dimensionless functions u and 
f by writing 

43, ko, k,h 

where 

k, = (3k,k,,)“* 

and 

u(r, ko, k,) = ekorE1[(k, + k,)r] - e-“O’E,[(k, - k,)r] + emko’ In 

Similarly, 

T= To+zf(r, ko, k,, k,, k,), 

where 

and 

kq = (wsdJ)1’2 

f(r, ko, k,, k,, k,) = e-kgr In a + ekqrEl[(k, + k,)r] 
I 4 

-ebQ’E,[(k,-k,)r] & 
1 4 1 

-${(ko-kq){e~““El[(k,-ko)r]-e’orE,[(k,+ko)r] 
4 

+e-kq’E,[(k,-kq)r]-ek~rE,[(kt+kq)r]} 

- (ko+ kq)(e-ko’E~[(kt-ko)r] -eko’E,[(k,+ko)r] 

- eekg’E,[(k, - k,)r] + ekq’El[(kl + kq)r]} 
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This last expression simplifies when perfusion is ignored to give 

+2korE,(k,r)-eko’E,[(ko+k,)r]+e-k”’E,[(k,-ko)r] . 
I 

In these expressions k. and k, are measured in units of cm- ’ and E, is the 
exponential integral 

For negative values of its argument in the foregoing expressions the Cauchy 
principal value must be taken, so that E,(x) should be interpreted as -Ei( -x) 
when x < 0; see Abramowitz and Stegun [lo]. The boundary conditions needed to 
obtain these solutions are 

ru, rf +O as r+O 

u,f+0 as r+co. 

The equations both possess solutions in which the conditions stated as r tends to 
zero do not hold; those solutions correspond to spontaneous internal point sources 
of optical intensity and heat, respectively. Since all power comes from the laser 
beam ru and rf must vanish at the origin of r. Similarly, there is no input of heat 
or optical intensity far from the fibre tips, so that u and f must tend to zero at 
infinity. 

This solution is applied as t + co ; the full time-independent solution would be 
extremely complicated in form, but simplifying assumptions permit solutions which 
give information about the rate at which the steady state is reached. If k, is set 
equal to zero, so that perfusion is ignored, the time-dependent solution predicts a 
period of about a day for the temperature distribution to lie within 5% of the 
equilibrium value at 1 cm from the fibre tip, so that in this case the equilibrium 
solution is a poor guide. However, a typical value for the perfusion rate in liver is 
12 ml/100 g/min and corresponds to a value for k, of about 1 cm-‘. With this 
value, the equilibrium temperature for a given power input is substantially lower 
and is achieved to the same level in 7 f min. 

The equilibrium solutions can be used to investigate the nature of the dependence 
of the solutions on the values of such physical parameters as the scattering and 
absorption coefficients. Figure 1 shows some comparisons for spherically symmetric 
emissions from a single point source. The lower pair of curves, marked A, 
correspond to a perfusion rate for which k, = 1 and the upper pair, B, correspond 
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Distance from source (mm) 

FIG. 1. Equilibrium temperature distribution as function of distance from the fibre tip for a spheri- 
cally symmetric point source for a power of 1.5 W with k,= 1.3 cm-’ and g=O.8. The solid lines 
correspond tok,=9.7cm-‘and thebrokenlines tok,=Ocm-‘:A:k,=lcm-‘;B:k,=Ocm-‘. 

to a condition in which there is no perfusion. A laser power of 1.5 W has been 
assumed although the diagram need only be linearly resealed on the vertical axis to 
find the effect of different powers. As can be seen, a perfusion rate such as this, 
which is appropriate for the rather high values to be found in the liver, makes a 
substantial difference to the temperature distribution and cannot be ignored here; 
the same is not necessarily true in, say, the breast where perfusion rates are much 
lower. 

The solid curves in each case give the temperature at a distance r from the tip 
of the fibre for the cone when k, = 9.6 cm-‘, k, = 1.3 cm-‘, and g = 0.8. The broken 
curves are calculated for the same value of k, but with k, set equal to zero. Even 
though there is substantial scattering in the first case it only affects the temperature 
by a few degrees even quite close to the tibre tip. The case when scattering is 
ignored corresponds to incident radiation which is absorbed according to the 
divergent version of Beer’s Law. The difference, however, is not really small enough 
to justify the complete neglect of scattering except perhaps on very long exposures 
where thermal damage reaches out to a region where most of the energy is in any 
case transferred by thermal conduction rather than electromagnetic radiation. 
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2. METHOD OF SOLUTION 

Equations (1) to (3) were solved using the method of lines. The method of lines 
is essentially a technique for replacing a system of partial differential equations in 
two or more independent variables by an approximate system of ordinary differen- 
tial equations in one of these variables, in this case the time variable. See Jones, 
Smith, and Klunker [ 111. The method of lines has a number of advantages over 
other algorithms. It can be used to solve every type of partial differential equation 
whether elliptic, parabolic, or hyperbolic, as well as ordinary differential equations 
other than those of eigenvalue type. It is very suitable for the study of the evolution 
of such a system as this. The final equilibrium solution is not required; what is of 
interest is the way the system varies with time so that the surgeon can know when 
the tumour has been treated. He can then turn the laser off so that no damage is 
done to healthy tissue surrounding it. Numerical solution is necessary since there 
is no analytical solution which distinguishes between living and dead tissue or 
which can make allowance for spherically asymmetrical output of intensity from the 
tips of the fibres. Nor could analytical methods easily cope with variations of the 
physical parameters with temperature. Matthewson [2] found such variations, and 
Wilson and Patterson [12] reported that substantial variations can occur on the 
death of tissue. 

The resulting set of ordinary differential equations generated by the method is 
integrated by the initial value Gear-Hindmarsh algorithm-i.e., the Gear backward 

Y 
25 U=O, T=37 

24 

FIG. 2. The grid employed for the computations in the x, y plane for given z. The solid circles 
indicate the axes of the tibres. On the boundaries (the grid points for which either coordinate is num- 
bered 1 or 25), U has the value 0, and T has the value 37”. The values dx and dy are both 3/22 cm; the 
value of ffz is 0.25 cm. 
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differentiation formulae for stiff equations [ 13, 143. In the integration algorithm the 
Jacobian matrix is assumed to be banded, which is normally the case in the method 
of lines and is calculated by finite differences. Interpolation is performed to reach 
the end of the time step intervals. The derivatives were approximated by 5-point 
Lagrangian differentiation formulae on a nonlinear grid. The boundary conditions 
at infinity are replaced by the condition applied at the edges of the grid. A 
nonlinear grid system of X: 25 x y : 25 x z: 15 was used; the x, y plane is shown in 
Fig. 2. 

With a grid system of size 25 x 25 x 15 the method of lines approximation 
produces a system of 9375 ordinary differential equations. But as the solutions are 
known at the boundaries this set of ordinary differential equations reduces to a 
system of 6877 equations. In effect the boundary points are evaluated algebraically 
rather than by numerical integration, and this suppresses error waves from starting 
at the boundary points. 

The complete problem was programmed in FORTRAN 77 [15] and the result- 
ing code was run on a DEC System 10 based on two KLlO processors. The light 
intensity equation and the temperature equation were solved separately, as the 
power density equation reaches the steady state very rapidly compared with the 
temperature equation. If they were solved together the integration step size would 
have to be a very small value to obtain a stable solution, therefore it would require 
a large amount of CPU time. The CPU times to solve the equations separately to 
the given relative tolerance of 10m4 were 2 h 8 min for the power density equation 
and 2 h 36 min for the temperature equation for t in the range from 0 to 100 s. 

In the method of lines the accuracy is governed by the number of spatial divi- 
sions, the order of the spatial coupling, and the truncation error of the integration 
algorithm. The first two dominate the overall error control in the method, and the 
integration algorithm adjusts the integration step size so that the local truncation 
error of each variable is below a specified maximum. This error is the local error 
at each integration step, and they can accumulate over a number of steps to cause 
a large global error. However, in a stable algorithm they tend to cancel rather than 
accumulate, so the global error does not grow at an unacceptable rate. The latter 
also depends on the equation set being solved. 

A simple check for stability and error control was carried out by changing the 
derivative approximations from 5- to 3-point Lagrangian differentiation formulae, 
but still using the relative integrator tolerance of 10e4. The results obtained by this 
exercise only showed a difference in the 4th/5th decimal place, and the CPU time 
for the 3-point method reduced to 1 h 13 min for the power density equation and 
1 h 49 min for the temperature equation. 

The boundary conditions were applied to the system after the derivatives had 
been discretised, as this produced a more stable set of ordinary differential equa- 
tions. In both cases (3-point and 5-point) in the death condition, Eq. (3), the 
integral was solved using a 32-point Gaussian quadrature formula. The effect of 
imposing the boundary conditions at a distance of the order of 3 cm from the Iibre 
tips rather than at a theoretically infinite distance has been investigated and found 
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FIG. 3. Temperature profiles and zone of necrosis in planes perpendicular to the axes of the fibres 
for Case 1 with a power 1.5 W per tibre after 60 s. The distance between the planes is 2.5 mm, the tibres 
at adjacent corners of the square are 13.4mm apart, and the fourth plane from the bottom of the 
sequence contains their tips, with incident radiation from them directed upwards. In (a) the contours of 
temperature at 10” intervals from 40°C are shown and can be compared with the graphs shown in 
perspective in (b). The zone of necrosis is shown in (c). The obscured quarter of each of the lower planes 
in (a) and (c) is the same as the other three quarters. 
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not to affect the solution. Overall, the errors in the solutions were approximately 
given by 1/N2, where N is the number of grid points defining the discretisation. In 
the drawing of the surface and contour diagrams, as in Fig. 3, for example, a taut 
cubic piecewise polynomial, the “ratio slope” method, was used [16] so that no 
extraneous turning points are created near the boundaries. Such a piecewise 
polynomial could easily be used to approximate the derivatives in the method of 
lines instead of Lagrangian differentiation formulae; this would be particularly 
appropriate in the case of a highly irregular grid. 

3. DISCUSSION 

The program has been run with a number of different sets of values for the 
physical parameters of tissue. In all cases the specific heat and density of tissue were 
taken equal to those of water, and the values for blood were taken as 
3.217 J gg’ “C-l and 1.0983 g cm-3, respectively. In all cases the libres were 
arranged in the pattern of a square of side 1.34 cm with an extra libre at the centre. 
Two examples are given in detail here. 

Case 1 is an example of isotropic scattering so that g=O with a laser power of 
1.5 W per libre and a value for c1 of 30”. A value for the perfusion rate q of 
6.37 x 1O-4 s-’ was adopted which is reasonable for breast tissue but perhaps 
rather low for the liver [17, 181; in the case of the liver, however, it is possible to 
cut off the blood supply entirely during treatment if so desired. The values taken 
initially for k, and k, were both 3 cm-i. The values used are appropriate to blood 
thrombus [19]; it should be noticed that the absorption coefficient k, employed 
here, consistently with Ishimaru’s definition, has half the value of the more usually 
quoted coefficient that assumes a model of absorption of the Kubelka-Munk type. 
See reference [4, Chaps. 7 and lo]. The value used for $46) is 4.5 h; in their paper 
on the modelling of laser treatment of a port-wine stain, van Gemert, de Klein, and 
Hulsberger-Henning [20] suggest a value for r(60) of 1 s, which is equivalent. 

Case 2 is an attempt to model the treatment of the liver by a Nd: YAG laser with 
an exposure time of 1 min, with a laser power of 1 W per fibre. The value of a is 
5”. A blood perfusion rate of q = 22 x 10 -’ s -’ has been used. Values for k, and k, 
have been based on the 11 cm-’ for liver reported by Wilson and Patterson [ 141 
for k, at 0.63 pm wavelength, in the absence of data for 1.06 pm. The values of k, 
and k, were then chosen to obtain as good agreement as possible with the observa- 
tions reported by Matthewson et al. [2] using the analytic solutions given above. 
This led to values for k, of 1.3 cm - ’ and of 0.8 for g; recent results obtained by 
Jacques and Prahl [21], Yoon et al. [22], and Wilson and Patterson [14] all 
indicate that tissue is strongly forward scattering, and the value used here for g is 
compatible with their results. Van Gemert et al. [23] has shown that the diffusion 
approximation is not entirely satisfactory when g is greater than about 0.9, but the 
value used here avoids that problem. 

For Case 1 the results obtained are shown in Fig. 3. The three columns in the 
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figure show contours of temperature in 10” steps from 40”, graphs of the tem- 
perature, and the necrotic zone in planes perpendicular to the fibres at a separation 
of 2.5 mm. It will be seen that the necrotic zone consists of five overlapping, roughly 
spherical regions in the form of a cross. For these values of the constants, either the 
exposure is too short or else the separation of the tibres is too great to obtain a 

FIG. 4. The region of necrosis for a power of 1 W at 1-min intervals, shown as in Fig. 312. The figures 
indicate the number of minutes at which tissue at the corresponding grid point was first recorded as 
dead. 
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more smoothly shaped necrotic zone. That could also be obtained in theory by 
increasing the laser power, but the power used in this example is very much the 
maximum possible in practice without charring. 

The effect of using a lower power for a longer period of time was then 
investigated. With a power of 1 W per fibre, a total exposure of 5 min was 
simulated, and the size of the necrotic zone recorded after 1, 2, 3, 4, and 5 min. The 
result is shown in Fig. 4. The numbers plotted show the number of minutes after 
the start of treatment at which the tissue at each grid-point is first recorded as dead. 
It can be seen that initially the tip of each fibre is the centre of an expanding zone 
separate from the others, but that after 34 min, the zone becomes a fairly smoothly 
shaped single region expanding as if from the centre of the square. Even after 5 min 
the necrotic zone had not reached as far as 7.5 mm from the plane of the libre tips. 
From this calculation it is possible to obtain the mean diameter of the necrotic 
zone, here defined as the diameter of the sphere with the same value, as a function 
of exposure time. The result is shown in Fig. 5 and exhibits a very strong 
qualitative similarity to Fig. 2 of Matthewson’s paper [2] in the case of the three 
lowest powers shown there. This is encouraging support for the underlying 
principles of the model. 

Figure 6 shows the results for Case 2 in the same way as in Fig. 3. The necrotic 
zone is rather similar in form to Case 1; the power of 1 W leads to lower tem- 
peratures at the fibre tips. The maximum temperature in this case is just under 
lOO”C, whereas with 1.5 W higher temperatures occur and lead to charring. To 
treat a more smoothly shaped region without excessive temperatures, a longer time 
can be employed or the libres can be placed closer together. Notice that in this 

Exposure time (minutes) 

FIG. 5. The mean diameter of the necrotic zone as a function of exposure time for the same calcula- 
tion as in Fig. 4. 
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example, as in the first example, there is a detectable asymmetry between the region 
ahead of the libre tips, and the region behind them. The difference, however, is 
really not very great, and suggests that information obtained from spherically 
symmetric mathematical models of the intensity distribution at the libre tips can 
give useful information. 

It has been possible to write a program which solves the equations of a mathe- 
matical model of the treatment of tumours by hyperthermia, using a cluster of 

FIG. 6. Temperature profiles and zone of necrosis for Case 2, shown in the same way as for Fig. 3. 
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tibres. The model can be used to obtain insight into the shape of the region treated 
and the effects of taking different values for parameters of the problem, some of 
which are not yet too well known. With better values, programs such as this could 
become a valuable aid to the surgeon in determining the nature of the most 
appropriate treatment of specific tumours. 
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